Silanolytic Chain Transfer in Ziegler–Natta Catalysis. Organotitanium-Mediated Formation of New Silapolyolefins and Polyolefin Architectures

Kwangmo Koo and Tobin J. Marks*

Department of Chemistry, Northwestern University Evanston, Illinois 60208-3113

Received July 2, 1997

The efficient and selective introduction of polar and/or reactive functional groups into polyolefin chains via homogeneous Ziegler–Natta catalytic processes¹ offers the tantalizing prospect of new polymer properties and architectures.^{2–5} We recently reported that organosilanes function as chain transfer agents in lanthanocene-mediated polymerizations to afford silyl-terminated ethylene polymers and copolymers (e.g., **I** and **II**).^{6,7} This

I
$$PhH_2Si$$
 I PhH_2Si $R = n-Bu, Ph$

observation raises intriguing questions of whether such transformations have generality, whether they might be effected by conventional group 4 catalysts (allowing "drop-in" processes), whether the scope can be extended beyond simple ethylene-based polymers, and whether more elaborate macromolecular architectures are accessible. We report here that several classes of organotitanium catalysts are highly and, so far, uniquely competent for producing a variety of new linear, stereoregular, and unusual branched silapolyolefins.

Polymerization and copolymerizations were carried out in the presence of PhSiH₃ under rigorously anhydrous/anaerobic conditions.^{4,6} Interestingly, a variety of *zirconium* metallocenes and quasi-metallocenes with a variety of cocatalysts^{1,8} produced predominantly or exclusively polyolefins devoid of silyl caps together with dehydrogenative silane coupling⁹ products (PhSiH₂-SiH₂Ph, etc.).^{9,10} The behavior of several "cationic" *organotitanium* catalysts is markedly different. Thus, "constrained geometry" catalyst¹¹ [Me₂Si(Me₄C₅)/BuN]TiMe⁺B(C₆F₅₎₄⁻⁻ (1) mediates

Figure 1. Relationship of polypropylene number average molecular weight (GPC versus polystyrene) to PhSiH₃ chain transfer agent concentration for the $[Me_2Si(Me_4C_5)'BuN]TiMe^+B(C_6F_5)_4^-$ -mediated capping of atactic polypropylene. Catalyst and olefin concentrations are assumed to be constant. Inset: Proposed catalytic cycle for this process.

the rapid polymerization of propylene with efficient silanolytic chain transfer (Table 1) and no detectable (by ¹H, ²⁹Si NMR) silane coupling products. ¹H, ¹³C, and ²⁹Si NMR are in accord with PhSiH₂-terminated atactic polypropylene microstructure **III**.^{12–14} Further structural proof derives from the synthesis of

$$\mathbf{H} \qquad \qquad \overset{H}{\underset{\text{Si}}{\overset{H}{\underset{\text{Ph}}{\overset{H}{\underset{\text{Ph}}{\overset{H}{\underset{\text{Ph}}{\overset{H}{\underset{\text{Ph}}{\overset{H}{\underset{\text{Ph}}{\overset{H}{\underset{\text{Ph}}{\overset{H}{\underset{\text{Ph}}{\overset{H}{\underset{\text{Ph}}{\underset{\text{Ph}}{\overset{H}{\underset{\text{Ph}}{\underset{\text{Ph}}{\overset{H}{\underset{\text{Ph}}{\underset{\text{Ph}}{\overset{H}{\underset{\text{Ph}}{\underset{\text{Ph}}{\overset{H}{\underset{\text{Ph}}{\underset{\text{Ph}}{\overset{H}{\underset{\text{Ph}}{\underset{\text{Ph}}{\overset{H}{\underset{\text{Ph}}{\underset{Ph}}}{\underset{Ph}}{\underset{Ph}}{\underset{Ph}}{\underset{Ph}}}{\underset{Ph}}{\underset{Ph}}}{\underset{Ph}}{\underset{Ph}}{\underset{Ph}}{\underset{Ph}}}{\underset{Ph}}{\underset{Ph}}{\underset{Ph}}{\underset{Ph}}{\underset{Ph}}}{\underset{Ph}}}{\underset{Ph}}{\underset{Ph}}}{\underset{Ph}}{\underset{Ph}}{\underset{Ph}}}{\underset{Ph}}{\underset{Ph}}}{\underset{Ph}}{\underset{Ph}}{\underset{Ph}}}{\underset{Ph}}{\underset{Ph}}}{\underset{Ph}}{\underset{Ph}}}{\underset{Ph}}{\underset{Ph}}{\underset{Ph}}}{\underset{Ph}}{\underset{Ph}}{\underset{Ph}}}{\underset{Ph}}{\underset{Ph}}}{\underset{Ph}}}{\underset{Ph}}{\underset{Ph}}}{\underset{Ph}}}{\underset{Ph}}}{\underset{Ph}}}{\underset{Ph}}{\underset{Ph}}}{\underset{Ph}}}{\underset{Ph}}}{\underset{Ph}}{\underset{Ph}}}{\underset{$$

an authentic sample (with indistinguishable NMR parameters) via organolanthanide-catalyzed hydrosilylation (1,2 regiochemistry expected¹⁰) of a vinylidene-terminated polypropylene^{8a} (eq 1). In

$$+ PhSiH_3 \frac{Me_2Si(Me_4C_5)_2SmCH(SiMe_3)_2}{60 \ ^{\circ}C, 12 \ h} PhH_2Si \xrightarrow{} (1)$$

regard to mechanism, polymerization coupled with silanolytic chain transfer (Figure 1, inset) having constant catalyst, olefin, and silane concentrations, as well as rapid chain growth after reinitiation, should obey eq 2,¹⁵ where \overline{P}_n is the steady-state number average degree of polymerization, k_p the rate constant for chain propagation, and k_s the rate constant for silanolytic chain

⁽¹⁾ For recent reviews, see: (a) Kaminsky, W.; Arndt, M. Adv. Polym. Sci. **1997**, *127*, 144–187. (b) Bochmann, M. J. Chem. Soc, Dalton Trans. **1996**, 255–270. (c) Brintzinger, H.-H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R. M. Angew. Chem., Int. Ed. Engl. **1995**, *34*, 1143–1170. (d) Soga, K., Terano, M., Eds. Catalyst Design for Tailor-Made Polyolefins; Elsevier: Tokyo, 1994. (e) Möhring, P. C.; Coville, N. J. J. Organomet. Chem. **1994**, *479*, 1–29.

⁽²⁾ For protected monomer approaches, see: (a) Stein, K. M.; Kesti, M.
(2) For protected monomer approaches, see: (a) Stein, K. M.; Kesti, M.
R.; Coates, G. W.; Waymouth, R. M. *Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.)* **1994**, *35*, 480–481. (b) Kesti, M. R.; Coates, G. W.; Waymouth, R. M. *J. Am. Chem. Soc.* **1992**, *114*, 9679–9680. (c) Datta, S. In *High Value Polymers*; Fawcett, A. H., Ed.; The Royal Society of Chemistry: Cambridge, 1991; pp 37–57.

 ⁽³⁾ For borane monomer approaches, see: (a) Chung, T. C.; Lu, H. L.;
 Januikul, W. *Polymer* 1997, *38*, 1495–1502. (b) Chung, T. C.; Lu, H. L.; Li,
 C. L. *Macromolecules* 1994, *27*, 7533–7537. (c) Chung, T. C.; Rhubright,
 D. *Macromolecules* 1993, *26*, 3019–3025.

⁽⁴⁾ For ring-opening Ziegler polymerization approaches, see: (a) Jia, L.; Yang, X.; Seyam, A. M.; Albert, I. D.; Fu, P.-F.; Yang, S.; Marks, T. J. *J. Am. Chem. Soc.* **1996**, *118*, 7900–7913. (b) Yang, X.; Seyam, A. M.; Fu, P.-F.; Marks, T. J. *Macromolecules* **1994**, *27*, 4625–4626. (c) Yang, X.; Jia, L.; Marks, T. J. J. Am. Chem. Soc. **1993**, *115*, 3392–3393.

⁽⁵⁾ For non in situ funtionalization via transfer to aluminum alkyls, see:
(a) Mogstad, A.-L.; Waymouth, R. M. *Macromolecules* 1994, *27*, 2313–2315.
(b) Waymouth, R. M.; Mogstad, A.-L. *Macromolecules* 1992, *25*, 2282–2284.

⁽⁶⁾ Fu, P.-F.; Marks, T. J. J. Am. Chem. Soc. 1995, 117, 10747–10748.
(7) Similar polyethylenes are produced via a mechanistically different Comediated process: Brookhart, M.; DeSimone, J. M.; Grant, B. E.; Tanner, M. J. Macromolecules 1995, 28, 5378–5380.

<sup>M. J. Macromolecules 1995, 28, 5378-5380.
(8) (a) Yang, X.; Stern, C. L.; Marks, J. T. J. Am. Chem. Soc. 1994, 116, 10015-10031. (b) Jia, L.; Yang, X.; Stern, C. L.; Marks, T. J. Organometallics 1997, 16, 842-857.</sup>

^{(9) (}a) Harrod, J. F.; Dioumaev, V. K. J. Organomet. Chem. **1996**, 521, 133–143. (b) Tilley, T. D. Acc. Chem. Res. **1993**, 26, 22–29 and references therein. (c) Corey, J. Y.; Huhmann, J. L.; Zhu, X.-H. Organometallics **1993**, 12, 1121–1130 and references therein.

⁽¹⁰⁾ Fu, P.-F.; Brard, L.; Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1995, 117, 7157–7168.

^{(11) (}a) Woo, T. K.; Margl, P. M.; Lohrenz, J. C. W.; Blochl, P. E.; Ziegler, T. J. Am. Chem. Soc. **1996**, 118, 13021–13030. (b) Chen, Y.-X.; Stern, C. L.; Yang, S.; Marks, T. J. J. Am. Chem. Soc. **1996**, 118, 12451–12452. (c) Stevens, J. C. in *Studies in Surface Science and Catalysis*; Hightower, J. W., Delglass, W. N., Iglesia, E., Bell, A. T., Eds.; Elsevier: Amsterdam, 1996; Vol. 101, pp 11–20, and references therein. (d) Canich, J. M.; Hlatky, G. G.; Turner, H. W. *PCT Appl.* WO 92-00333, 1992. (12) ¹H NMR (400 MHz, C₆D₆): δ 4.48 (PhSiH₂, t, ³J = 3.6 Hz, resolved

^{(12) &}lt;sup>1</sup>H NMR (400 MHz, C₆D₆): δ 4.48 (PhSiH₂, t, ³J = 3.6 Hz, resolved in lower M_w samples; SiH₂ diastereotopism not resolved), 0.75 (SiCH₂, t, ³J = 3.6 Hz, resolved in lower M_w samples). ¹³C NMR (75 MHz, C₆D₆): δ 1.95 (SiCH₂, t, ¹J_{C-H} = 118 Hz) and 14.53 (-CH₂CH₂CH₂, q, ¹J_{C-H} = 124 Hz) of approximately equal intensity with NOE suppression.

⁽¹³⁾ Bovey, F. A. Chain Structure and Conformation of Macromolecules; Academic Press: New York, 1982; pp 75–84.

^{(14) (}a) The PhSiH₂CH₂- spectral parameters^{14b} are identical to those obtained in the Me₂Si(Me₄C₅)₂Sm-mediated 1,2 hydrosilylation^{10,14c} of 2-methyl-1-butene. (b) Williams, E. A. In *The Chemistry of Organic Silicon Compounds*; Patai, S., Rappoport, Z., Eds.; Wiley: Chichester, 1984; pp 512– 520. (c) Molander, G. A.; Nicols, P. J. *J. Am. Chem. Soc.* **1995**, *117*, 4415– 4416.

Table 1. Propylene and 1-Hexene Polymerization; Ethylene-1-Hexene and Ethylene-Styrene Copolymerization; Representative Experiments in the Presence of [Me₂Si(Me₄C₅)('BuN)[TiMe⁺B(C₆F₅)₄^{- a} and PhSiH₃

entry	time (min)/ temp (°C)	monomer (1 atm)	comonomer (M)	PhSiH ₃ (M)	polymer yield (g)	comonomer incorp (M%)	$M_{ m n}{}^b$	$M_{ m w}/M_{ m n}{}^b$
1	3/25	propylene		0.03	3.0		43 000	3.5
2	3/25	propylene		0.05	2.5		24 200	1.7
3	3/25	propylene		0.08	1.3		20 300	2.0
4	3/25	propylene		0.40	0.4		7 500	2.1
5	3/25	propylene		0.73	3.8		1 100	4.4
6	3/25	propylene		1.13	3.2		890	5.0
7	10/0	propylene		0.020	4.0		67 000	3.1
8	60/25	1-hexene ^c		0.030	3.1		2 500	2.5
9	180/25	ethylene	0.17^{d}	0.050	2.8	50	72 000	1.4
10	180/25	ethylene	0.32^{e}	0.060	2.6	52	50 000	2.4

^a Concentration range of catalyst = 2.64-3.05 mM. ^b By GPC in 1,2,4-trichlorobenzene vs polystyrene standards. ^c Concentration of 1-hexene = 6.00 M. ^{*d*} Styrene. e^{t} 1-Hexene.

transfer. Figure 1 illustrates good adherence to eq 2 (with k_p/k_s $\approx 35)^{16}$ in a series of experiments in which [1] was held constant and [propylene] and [PhSiH₃] maintained pseudo-zero-order.

$$\bar{P}_{n} = \frac{k_{p}[\text{olefin}]}{k_{s}[\text{H}_{3}\text{SiR}]}$$
(2)

Regarding monomer scope, 1 mediates rapid 1-hexene polymerization to yield atactic, silyl-functionalized poly(1-hexene) (Table 1). Interestingly, 1 fails to effect PhSiH₃ chain transfer in ethylene polymerization at 25 °C (uncapped polyethylene is produced instead). That this reflects a subtle interplay of competing kinetic and steric effects is suggested by the following: (1) 1-mediated chain transfer to polyethylene is effective at -25 °C; (2) 1 mediates efficient 25 °C chain transfer in ethylene + 1-hexene and ethylene + styrene copolymerizations, yielding products with high degrees of comonomer incorporation (Table 1) in which Si is predominantly adjacent to a 1,2-inserted comonomer unit (IV and V).¹⁷

That **1** is not unique in mediating chain transfer and that stereoregular products are accessible is demonstrated by eqs 3 and 4 which yield isotactic silapolypropylene¹⁸ (mmm = 94%) and syndiotactic silapolystyrene (rrrr = 98%),¹⁹ respectively.

Finally, 1 + propylene polymerization in the presence of 1,4disilabenzene²⁰ and 1,3,5-trisilabenzene²⁰ reveal that *polyfunc*tional chain transfer agents effect assembly of more complex macromolecular architectures (VI^{21a} and VII, ^{21b} respectively; NMR spectra similar to polymers produced via the corresponding hydrosilylation reactions (cf., eq 1)).

$$\mathbf{v}_{\mathbf{i}} \qquad \qquad \mathbf{v}_{\mathbf{i}} \qquad \qquad \mathbf{v}_{\mathbf{i}}$$

These findings demonstrate that silanolytic chain transfer in olefin polymerizations and copolymerizations can be effected by conventional "cationic" organotitanium catalysts. In addition to endcapping a variety of linear polymers and copolymers, the possibility of catalytically creating unusual, silane-linked multichain polymer connectivities in situ is achieved.

Acknowledgment. This research was supported by the NSF (grant CHE 9618589). K. Koo thanks Dow Corning for a postdoctoral fellowship. We thank Drs. Chi-Long Lee and Gary Burns of Dow Corning for GPC analyses and helpful discussions.

Supporting Information Available: Details of polymerization procedures and polymer characterization (6 pages, print/PDF). See any current masthead page for ordering information and Web access instructions.

JA972194X

(19) (a) Catalyst: Mena, M.; Pellinghelli, M.; Royo, P.; Serrano, R.; Tiripicchio, A. J. Chem. Soc., Chem. Commun. **1986**, 1118–1119. (b) By NMR (C₆D₆): rrrr = 98%, $M_n = 52\ 000$, $\delta\ SiH_2 = 4.21$.

(20) Woo, H.-G.; Walzer, J. F.; Tilley, T. D. Macromolecules 1991, 24, 6863-6860.

(21) (a) $M_{\rm n} = 24\ 000$ by ¹H NMR (C₆D₆). (b) $M_{\rm n} = 35\ 000$ by ¹H NMR (C₆D₆). See the Supporting Information for further details.

^{(15) (}a) Tait, P. J. T.; Watkins, N. D. In Comprehensive Polymer Science: Allen, G., Bevington, J. C., Eds.; Pergamon Press: Oxford, 1989; Vol. 4, pp 549–563. (b) Kissin, Y. V. *Isospecific Polymerization of Olefins*: Springer-Verlag: New York, 1985; Chapter 1.

⁽¹⁶⁾ For propylene solubility data (toluene), see: Wang, B. P., Ph.D. Dissertation, University of Massachusetts, 1989. (17) ¹³C NMR (75 MHz, C₂D₂Cl₂): **IV**, δ 14.4 (t, ¹J_{C-H} = 119 Hz, PhSiH₂CH₂-; identical to that in PhSiH₂-terminated poly(1-hexene)); **V**, δ 13.5 (t, ${}^{1}J_{C-H} = 118$ Hz, PhSiH₂CH₂CHPh; identical to that in PhSiH₂CH₂-CH2Ph10).

^{(18) (}a) Catalyst: Longo, P.; Grassi, A.; Pellecchia, C.; Zambelli, A. *Macromolecules* **1987**, *20*, 1015–1018. (b) By NMR: *mmmm* = 94%, M_n = 8200; δ Si $H_2 = 4.22$.